Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pflugers Arch ; 476(1): 123-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37775569

RESUMO

Intracellular Ca2+ ([Ca2+]i) signaling and catecholamine (CA) exocytosis from adrenal chromaffin cells (CCs) differ between mammalian species. These differences partly result from the different contributions of Ca2+-induced Ca2+-release (CICR) from internal stores, which boosts intracellular Ca2+ signals. Transient inhibition of the sarcoendoplasmic reticulum (SERCA) Ca2+ pump with cyclopiazonic acid (CPA) reduces CICR. Recently, Martínez-Ramírez et al. found that CPA had contrasting effects on catecholamine secretion and intracellular Ca2+ signals in mouse and bovine CCs, where it enhanced and inhibited exocytosis, respectively. After CPA withdrawal, exocytosis diminished in mouse CCs and increased in bovine CCs. These differences can be explained if mouse CCs have weak CICR and strong Ca2+ uptake, and the reverse is true for bovine CCs. Surprisingly, CPA slightly reduced the amplitude of Ca2+ signals in both mouse and bovine CCs. Here we examined the effects of CPA on stimulated CA exocytosis and Ca2+ signaling in rat CCs and investigated if it alters differently the responses of CCs from normotensive (WKY) or hypertensive (SHR) rats, which differ in the gain of CICR. Our results demonstrate that CPA application strongly inhibits voltage-gated exocytosis and Ca2+ transients in rat CCs, regardless of strain (SHR or WKY). Thus, despite the greater phylogenetic distance from the most recent common ancestors, suppression of endoplasmic reticulum (ER) Ca2+ uptake through CPA inhibits the CA secretion in rat CCs more similarly to bovine than mouse CCs, unveiling divergent evolutionary relationships in the mechanism of CA exocytosis of CCs between rodents. Agents that inhibit the SERCA pump, such as CPA, suppress catecholamine secretion equally well in WKY and SHR CCs and are not potential therapeutic agents for hypertension. Rat CCs display Ca2+ signals of varying widths. Some even show early and late Ca2+ components. Narrowing the Ca2+ transients by CPA and ryanodine suggests that the late component is mainly due to CICR. Simultaneous recordings of Ca2+ signaling and amperometry in CCs revealed the existence of a robust and predictable correlation between the kinetics of the whole-cell intracellular Ca2+ signal and the rate of exocytosis at the single-cell level.


Assuntos
Células Cromafins , Hipertensão , Ratos , Animais , Bovinos , Camundongos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Catecolaminas , Filogenia , Cálcio/metabolismo , Células Cromafins/metabolismo , Sinalização do Cálcio , Exocitose , Mamíferos/metabolismo
2.
Exp Cell Res ; 433(2): 113847, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931771

RESUMO

Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of ß-dystroglycan (ß-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of ß-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in ß-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.


Assuntos
Distroglicanas , Hipertensão , Ratos , Animais , Espécies Reativas de Oxigênio , Ratos Endogâmicos SHR , Megacariócitos/metabolismo , Ratos Endogâmicos WKY , Hipertensão/metabolismo
3.
Mol Neurobiol ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848729

RESUMO

The SUR1-TRPM4-AQP4 complex is overexpressed in the initial phase of edema induced after cerebral ischemia, allowing the massive internalization of Na+ and water within the brain micro endothelial cells (BMEC) of the blood-brain barrier. The expression of the Abcc8 gene encoding SUR1 depends on transcriptional factors that are responsive to oxidative stress. Because reactive oxygen species (ROS) are generated during cerebral ischemia, we hypothesized that antioxidant compounds might be able to regulate the expression of SUR1. Therefore, the effect of resveratrol (RSV) on SUR1 expression was evaluated in the BMEC cell line HBEC-5i subjected to oxygen and glucose deprivation (OGD) for 2 h followed by different recovery times. Different concentrations of RSV were administered. ROS production was detected with etidine, and protein levels were evaluated by Western blotting and immunofluorescence. Intracellular Na+ levels and cellular swelling were detected by imaging; cellular metabolic activity and rupture of the cell membrane were detected by MTT and LDH release, respectively; and EMSA assays measured the activity of transcriptional factors. OGD/recovery increased ROS production induced the AKT kinase activity and the activation of SP1 and NFκB. SUR1 protein expression and intracellular Na+ concentration in the HBEC-5i cells increased after a few hours of OGD. These effects correlated with cellular swelling and necrotic cell death, responses that the administration of RSV prevented. Our results indicate that the ROS/AKT/SP1-NFκB pathway is involved in SUR1 expression during OGD/recovery in BMEC of the blood-brain barrier. Thus, RSV prevented cellular edema formation through modulation of SUR1 expression.

4.
Front Pharmacol ; 14: 1238503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554982

RESUMO

Resting membrane potential is a bioelectric property of all cells. Multiple players govern this property, the ion channels being the most important. Ion channel dysfunction can affect cells' resting membrane potential and could be associated with numerous diseases. Therefore, the drug discovery focus on ion channels has increased yearly. In addition to patch-clamp, cell-based fluorescent assays have shown a rapid and reliable method for searching new ion channel modulators. Here, we used a cell-based membrane potential assay to search for new blockers of the Kv10.1, a potassium channel strongly associated with cancer progression and a promising target in anticancer therapy. We found that fluoxetine and miconazole can inhibit the Kv10.1 channel in the micromolar range. In contrast, BL-1249 potentiates Kv10.1 currents in a dose-dependent manner, becoming the first molecule described as an activator of the channel. These results demonstrate that cell-based membrane potential assay can accelerate the discovery of new Kv10.1 modulators.

5.
Toxicon X ; 18: 100151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36873112

RESUMO

Venoms from tarantulas contain low molecular weight vasodilatory compounds whose biological action is conceived as part of the envenomation strategy due to its propagative effects. However, some properties of venom-induced vasodilation do not match those described by such compounds, suggesting that other toxins may cooperate with these ones to produce the observed biological effect. Owing to the distribution and function of voltage-gated ion channels in blood vessels, disulfide-rich peptides isolated from venoms of tarantulas could be conceived into potential vasodilatory compounds. However, only two peptides isolated from spider venoms have been investigated so far. This study describes for the first time a subfraction containing inhibitor cystine knot peptides, PrFr-I, obtained from the venom of the tarantula Poecilotheria regalis. This subfraction induced sustained vasodilation in rat aortic rings independent of vascular endothelium and endothelial ion channels. Furthermore, PrFr-I decreased calcium-induced contraction of rat aortic segments and reduced extracellular calcium influx to chromaffin cells by the blockade of L-type voltage-gated calcium channels. This mechanism was unrelated to the activation of potassium channels from vascular smooth muscle, since vasodilation was not affected in the presence of TEA, and PrFr-I did not modify the conductance of the voltage-gated potassium channel Kv10.1. This work proposes a new envenomating function of peptides from venoms of tarantulas, and establishes a new mechanism for venom-induced vasodilation.

6.
Cancers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672393

RESUMO

ALL is a highly aggressive subtype of leukemia that affects children and adults. Glucocorticoids (GCs) are a critical component of the chemotherapeutic strategy against T-ALL. Cases of resistance to GC therapy and recurrent disease require novel strategies to overcome them. The present study analyzed the effects of Dex, one of the main GCs used in ALL treatment, on two T-ALL cell lines: resistant Jurkat and unselected CCRF-CEM, representing a mixture of sensitive and resistant clones. In addition to nuclear targeting, we observed a massive accumulation of Dex in mitochondria. Dex-treated leukemic cells suffered metabolic reprogramming from glycolysis and glutaminolysis towards lipolysis and increased FAO, along with increased membrane polarization and ROS production. Dex provoked mitochondrial fragmentation and induced autophagy/mitophagy. Mitophagy preceded cell death in susceptible populations of CCRF-CEM cells while serving as a pro-survival mechanism in resistant Jurkat. Accordingly, preventing FAO or autophagy greatly increased the Dex cytotoxicity and overcame GC resistance. Dex acted synergistically with mitochondria-targeted drugs, curcumin, and cannabidiol. Collectively, our data suggest that GCs treatment should not be neglected even in apparently GC-resistant clinical cases. Co-administration of drugs targeting mitochondria, FAO, or autophagy can help to overcome GC resistance.

7.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288902

RESUMO

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Assuntos
Glicosúria , Simportadores de Cloreto de Sódio , Humanos , Camundongos , Animais , Simportadores de Cloreto de Sódio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Glucose/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Fosforilação , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Glicosúria/metabolismo
8.
Methods Mol Biol ; 2565: 129-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205892

RESUMO

The spontaneously hypertensive rat (SHR) is a model widely used to investigate the causal mechanisms of essential hypertension. The enhanced catecholamine (CA) release reported in adrenal glands from adult SHRs raised considerable interest for its possible implication in the genesis of hypertension. The use of powerful techniques such as calcium imaging, electrophysiology, and single-cell amperometry to monitor in real time the key steps in CA secretion has allowed a better understanding of the role of chromaffin cells (CC) in the pathophysiology of hypertension, although several questions remain. Additionally, the implementation of these techniques in preparations in situ, such as the acute adrenal gland slice, which maintains the microenvironment, cell-to-cell communication, and anatomical structure similar to that of the intact adrenal gland, yields data that may have even greater physiological relevance. Here, we describe the procedures to measure the blood pressure of rats in a noninvasive manner, how to obtain primary cultures of adrenal chromaffin cells and acute adrenal slices, and how to perform amperometric recordings and intracellular calcium imaging in these preparations.


Assuntos
Células Cromafins , Hipertensão , Glândulas Suprarrenais , Animais , Pressão Sanguínea , Cálcio , Catecolaminas , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
9.
J Ovarian Res ; 15(1): 85, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869556

RESUMO

BACKGROUND: The postnatal mammalian ovary undergoes a series of changes to ensure the maturation of sufficient follicles to support ovulation and fecundation over the reproductive life. It is well known that intracellular [Ca2+]i signals are necessary for ovulation, fertilization, and egg activation. However, we lack detailed knowledge of the molecular identity, cellular distribution, and functional role of Ca2+ channels expressed during folliculogenesis. In the neonatal period, ovarian maturation is controlled by protein growth factors released from the oocyte and granulosa cells. Conversely, during the early infantile period, maturation becomes gonadotropin-dependent and is controlled by granulosa and theca cells. The significance of intracellular Ca2+ signaling in folliculogenesis is supported by the observation that mice lacking the expression of Ca2+/calmodulin-dependent kinase IV in granulosa cells suffer abnormal follicular development and impaired fertility. RESULTS: Using immunofluorescence in frozen ovarian sections and confocal microscopy, we assessed the expression of high-voltage activated Ca2+ channel alpha subunits and InsP3 and ryanodine receptors in the postnatal period from 3 to 16 days. During the neonatal stage, oocytes from primordial and primary follicles show high expression of various Ca2+-selective channels, with granulosa and stroma cells expressing significantly less. These channels are likely involved in supporting Ca2+-dependent secretion of peptide growth factors. In contrast, during the early and late infantile periods, Ca2+ channel expression in the oocyte diminishes, increasing significantly in the granulosa and particularly in immature theca cells surrounding secondary follicles. CONCLUSIONS: The developmental switch of Ca2+ channel expression from the oocytes to the perifollicular cells likely reflects the vanishing role of the oocytes once granulosa and theca cells take control of folliculogenesis in response to gonadotropins acting on their receptors.


Assuntos
Folículo Ovariano , Ovário , Animais , Feminino , Gonadotropinas , Células da Granulosa/metabolismo , Mamíferos , Camundongos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Células Tecais/metabolismo
10.
Pflugers Arch ; 473(11): 1775-1793, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510285

RESUMO

The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats' adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.


Assuntos
Células Cromafins/fisiologia , Hipertensão/fisiopatologia , Animais , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Hipertensão/metabolismo , Masculino , Fenótipo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Rianodina/metabolismo
11.
Pharmacol Rep ; 73(6): 1744-1753, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34213738

RESUMO

BACKGROUND: Ion channels have been proposed as therapeutic targets for different types of malignancies. One of the most studied ion channels in cancer is the voltage-gated potassium channel ether-à-go-go 1 or Kv10.1. Various studies have shown that Kv10.1 expression induces the proliferation of several cancer cell lines and in vivo tumor models, while blocking or silencing inhibits proliferation. Kv10.1 is a promising target for drug discovery modulators that could be used in cancer treatment. This work aimed to screen for new Kv10.1 channel modulators using a thallium influx-based assay. METHODS: Pharmacological effects of small molecules on Kv10.1 channel activity were studied using a thallium-based fluorescent assay and patch-clamp electrophysiological recordings, both performed in HEK293 stably expressing the human Kv10.1 potassium channel. RESULTS: In thallium-sensitive fluorescent assays, we found that the small molecules loperamide and amitriptyline exert a potent inhibition on the activity of the oncogenic potassium channel Kv10.1. These results were confirmed by electrophysiological recordings, which showed that loperamide and amitriptyline decreased the amplitude of Kv10.1 currents in a dose-dependent manner. Both drugs could be promising tools for further studies. CONCLUSIONS: Thallium-sensitive fluorescent assay represents a reliable methodological tool for the primary screening of different molecules with potential activity on Kv10.1 channels or other K+ channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Loperamida/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Relação Dose-Resposta a Droga , Fluorescência , Células HEK293 , Humanos , Loperamida/administração & dosagem , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/administração & dosagem , Reprodutibilidade dos Testes , Tálio/metabolismo
12.
FASEB J ; 35(6): e21478, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991146

RESUMO

Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.


Assuntos
Reação Acrossômica , Sinalização do Cálcio , Exocitose , Potenciais da Membrana , Capacitação Espermática , Espermatozoides/fisiologia , Humanos , Masculino , Fosforilação
13.
Exp Cell Res ; 402(2): 112577, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811902

RESUMO

Cellular heterogeneity and diversity are recognized to contribute to the functions of neutrophils under homeostatic and pathological conditions. We previously suggested that the chronic inflammatory responses associated with hypertension (HTN) are related to the participation of different subpopulations of neutrophils. Two populations of neutrophils can be obtained by density gradient centrifugation: normal-density neutrophils (NDN) and low-density neutrophils (LDN). However, the lack of standardized functional protocols has limited phenotypic characterization and functional comparisons of LDN and NDN. Based on their capability to incorporate Na+, maturity and activation stage, we characterized NDN and LDN in blood samples from ten patients with HTN and ten healthy individuals (HI) using flow cytometry. We compared the levels of reactive oxygen species (ROS), generation of neutrophil extracellular traps (NETs) and levels of apoptosis in NDN and LDN. In general, the NDN and LDN subpopulations from patients with HTN exhibited higher levels of sodium influx and ROS, and lower levels of apoptosis than the corresponding NDN and LDN subsets from HI. Transmission electron microscopy revealed NDN and LDN from patients with HTN exhibited alterations to mitochondrial morphology and fewer cytoplasmic granules than the corresponding HI subpopulations. Our results indicate both the NDN and LDN subpopulations enhance the effects of inflammation that contribute to the pathophysiology of HTN. Further detailed studies are required to characterize the events during ontogeny of the myeloid lineage that result in the diverse phenotypic characteristics of each subpopulation of LDN and NDN.


Assuntos
Heterogeneidade Genética , Inflamação/sangue , Neutrófilos/ultraestrutura , Hipertensão Arterial Pulmonar/sangue , Adulto , Apoptose/genética , Armadilhas Extracelulares/genética , Citometria de Fluxo , Humanos , Inflamação/patologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/patologia , Hipertensão Arterial Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
FASEB J ; 35(4): e21528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742713

RESUMO

We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.


Assuntos
Cálcio/metabolismo , Progesterona/farmacologia , Capacitação Espermática/efeitos dos fármacos , Inanição/metabolismo , Reação Acrossômica/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Feminino , Masculino , Camundongos , Progesterona/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
16.
FASEB J ; 34(12): 16622-16644, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131132

RESUMO

Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.


Assuntos
Astrócitos/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Hipocampo/metabolismo , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial/fisiologia , Neurônios/metabolismo , Ratos , Transdução de Sinais/fisiologia
17.
Neurosci Lett ; 736: 135267, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717335

RESUMO

Nociceptive stimuli attributes are codified in the periphery; at this level, D2-like dopamine (DA) receptor activation decreases the high voltage-gated Ca2+ current predominantly in mechanonociceptive neurons, which explains the presynaptic action mechanism of the antinociception produced by quinpirole when it is intrathecally administered in rats. However, the identity of D2-like DA receptor subtype that mediates this effect remains unknown. To answer this question, we used Fluo-4-based Ca2+ microfluorometry to study the depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons (identified by its binding to the Isolectin B4), and to test the effect of D2-like DA receptor activation by quinpirole in presence of selective antagonists for D2, D3, and D4 DA receptors. The results showed a significantly greater contribution of the D4 DA receptor in the down-modulation of depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons compared to the other receptors. Although the D2 and D3 receptor antagonists also slightly inhibited the effect of quinpirole, their effects were significantly weaker than those of the D4 receptor antagonist. Furthermore, we showed that quinpirole selectively inhibits the CaV2.2 Ca2+ channels. Our results suggest that the activation of the D4 DA receptors is a promising strategy for pain management at the spinal cord level.


Assuntos
Canais de Cálcio Tipo N/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Neurônios/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D4/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Compr Physiol ; 9(4): 1443-1502, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31688964

RESUMO

Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, ß-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.


Assuntos
Doenças das Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/fisiologia , Células Cromafins/fisiologia , Doenças das Glândulas Suprarrenais/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia
19.
J Vis Exp ; (153)2019 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31762449

RESUMO

A method to study desensitization and recovery of crayfish photoreceptors is presented. We performed intracellular electrical recordings of photoreceptor cells in isolated eyestalks using the discontinuous single electrode-switched voltage-clamp configuration. First, with a razor blade we made an opening in the dorsal cornea to get access to the retina. Thereafter, we inserted a glass electrode through the opening, and penetrated a cell as reported by the recording of a negative potential. Membrane potential was clamped at the photoreceptor's resting potential and a light-pulse was applied to activate currents. Finally, the two light-flash protocol was employed to measure current desensitization and recovery. The first light-flash triggers, after a lag period, the transduction ionic current, which after reaching a peak amplitude decays towards a desensitized state; the second flash, applied at varying time intervals, assesses the state of the light-activated conductance. To characterize the light-elicited current, three parameters were measured: 1) latency (the time elapsed between light flash delivery and the moment in which current achieves 10% of its maximum value); 2) peak current; and 3) desensitization time constant (exponential time constant of the current decay phase). All parameters are affected by the first pulse. To quantify recovery from desensitization, the ratio p2/p1 was employed versus time between pulses. p1 is the peak current evoked by the first light-pulse, and p2 is the peak current evoked by the second pulse. These data were fitted to a sum of exponential functions. Finally, these measurements were carried out as function of circadian time.


Assuntos
Astacoidea , Luz , Células Fotorreceptoras/efeitos da radiação , Animais , Transporte de Íons/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo
20.
Cell Death Dis ; 10(10): 779, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611561

RESUMO

Anticancer properties of non-psychoactive cannabinoid cannabidiol (CBD) have been demonstrated on tumors of different histogenesis. Different molecular targets for CBD were proposed, including cannabinoid receptors and some plasma membrane ion channels. Here we have shown that cell lines derived from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells, are highly sensitive to CBD treatment. CBD effect does not depend on cannabinoid receptors or plasma membrane Ca2+-permeable channels. Instead, CBD directly targets mitochondria and alters their capacity to handle Ca2+. At lethal concentrations, CBD causes mitochondrial Ca2+ overload, stable mitochondrial transition pore formation and cell death. Our results suggest that CBD is an attractive candidate to be included into chemotherapeutic protocols for T-ALL treatment.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...